Search

additional issues

a few more approaches
Heuristics

• For A*, the more accurate the heuristic, the better the performance.
 – fewer state will be expanded.

• Sometimes we need to be creative in developing heuristics:
 – heuristic based on a relaxed problem.
 – pattern databases
 • store solution to subproblems.
 – learning from experience
 • store solutions to sample problems.
OnLine Search

• Dynamic environments, things can change each time a step is made.
 – imagine solving the water jug problem when after each step someone can mess with the jugs...

• Search is *much* harder.
 – some environments can involve dead ends with no hope of backtracking.
 – actions are made, not simulated.
Online Search Strategies

• Assuming steps are reversible, DFS often makes more sense than BFS.
 – here expanding a node means something like "moving to a new place". Local order is obviously better than jumping from place to place.
 – Often need to keep track of all paths taken (not just all nodes visited).
 – Sometimes need to build a map of the environment.
Evolutionary Computation

- Genetic Algorithms
- Evolutionary Strategies
- Genetic Programming
- Lots of others...
Genetic Algorithms

• Find some way to encode all possible solutions (paths, parameters, whatever...) as a sequence of bits.
 – typically, fixed length sequence of bits.
 – sometimes higher-level encodings are used.

• Generate a random population of potential solutions.

• Evaluate each potential solution (determine the fitness).

• Use fitness to determine who is allowed to participate in reproduction.
Fitness

• Given an encoding of a possible solution, we need a function/simulation that produces a number.
 – the higher the number, the more fit the individual.

• This is the expensive part!
 – applying genetic operators is not computationally expensive.
Reproduction is blind

• Traditionally, the algorithm knows nothing about what makes an individual fit.
 – the fitness function is a black box.
 – the only comparison made is based on fitness.

• The probability of contributing to the next generation is based on fitness.
 – many schemes for this:
 • roulette wheel
 • rank ordering
Reproduction Operators

• Crossover: combine the genetic material (bits) from two *fit* individuals.
 – many variations: one point crossover, two point crossover, uniform crossover, ...

• Mutation: randomly flip bits in the poor, helpless offspring.

• Crossover *exploits* fitness, Mutation provides *exploration* (to avoid getting stuck in local optima).
One Point Crossover

Crossover point is selected randomly.

\[000111 + 101010 \Rightarrow 000010, \quad 101111\]

- or -

\[000111 + 101010 \Rightarrow 001010, \quad 100111\]

and lots of other possibilities.
Mutation

• Pick a bit in a child randomly.
• Flip the bit

 \[011001 \Rightarrow 010001\]

• *Rate* of mutation determines how likely each bit will be flipped.
• Sometimes the rate is decreased over time (idea borrowed from simulated annealing).
GA Example: TSP

We need a way to encode all possible solutions tours that start at and end at A.

Options:
- Clever encoding
- Penalties for invalid individuals.
 lots of issues here...
Evolutionary Strategies

• Like GA, but no crossover
 – Individual are selected for next generation according to fitness.
 – Only operator is mutation.
 – random search with memory.
Genetic Programming

• Potential solutions (individuals in the population) are actually computer programs.
• fitness is determined by running the programs.
• encoding is typically tree-based representation of a program.
 – LISP expressions!
GP example

A: \((+ (\ (* \ x \ y) \ y))\)

B: \((- x (\ (+ \ y \ y))\)

A + B =>

\((+ (\ (* \ x \ y) \ (+ \ y \ y))\),

\((- x \ y)\)